
Instalación y uso de IDE's

ndice

	1. IDE

	2. Plugins

	3. Proyecto de ejemplo

	4. Intellij

	5. Instalación Intellij

	6. Compilación con Intellij

	7. Navegación

	8. Depuración (debug)

	9. JDK vs JRE

	10. Referencias

1. IDE

	I ntegrated D evelopment E nvironment

	Una aplicación con conjunto de herramientas que facilitan la tarea al programador

	Editor de texto

	Compilador

	Enlazador

	Control de versiones

	Gestión de tareas

	Depurador

	Integración con IA generativa

	Empaquetado, generador de instalaciones

1.1. Editor de código

Proporciona una interfaz para escribir y editar el código fuente. Suele incluir características como resaltado de sintaxis, autocompletado, indentación automática y otras utilidades para facilitar la escritura del código.

1.2. Compilador/Intérprete

Permite compilar o interpretar el código fuente en un formato ejecutable o en bytecode, dependiendo del lenguaje de programación utilizado. Algunos IDEs también ofrecen la capacidad de ejecutar el código directamente desde el entorno.

1.3. Depurador

Es una herramienta que ayuda a identificar y corregir errores en el código. Permite establecer puntos de interrupción, examinar el estado de las variables, ejecutar el código paso a paso y realizar otras operaciones para analizar y solucionar problemas en el programa.

1.4. Gestión de proyectos/ficheros

Permite crear, organizar y administrar proyectos de desarrollo de software. Esto incluye la capacidad de crear estructuras de directorios, agregar o eliminar archivos, gestionar dependencias y realizar otras tareas relacionadas con la organización del proyecto.

1.5. Control de versiones

Algunos IDEs incluyen integración con sistemas de control de versiones como Git, que permiten realizar seguimiento de cambios en el código, realizar confirmaciones (commits), fusionar (merge) ramas y otras operaciones relacionadas con la gestión del código fuente.

1.6. Herramientas de construcción

Algunos IDEs proporcionan herramientas para automatizar el proceso de construcción del software, como la generación de archivos de configuración, la compilación, el empaquetado y otras tareas relacionadas con la construcción del proyecto.

1.7. Herramientas externas

Los IDEs suelen ofrecer integración con otras herramientas y servicios externos, como sistemas de gestión de bases de datos, terminal, servidores web, frameworks, bibliotecas, entre otros, para facilitar el desarrollo y la integración con otros componentes del sistema.

1.8. Agentic code

Integración con IA generativa, que permite realizar funciones que antes se realizaban manualmente o con plugins específicos

	Generación de código

	Modificación de código (refactor)

2. Plugins

	Complementos que se relacionan con otras herramientas para agregarle una nueva función.

	Esta aplicación adicional es ejecutada por la aplicación principal.

	Ejercicio: Probar Keymap Exporter

3. Proyecto de ejemplo

	Proyecto de ejemplo

	Descomprime el ZIP

3.1. Construcción sin IDE

	Carpeta Tetris

	Fichero Makefile

	Es un sistema básico de construcción

	Antiguo, pero muy estándar y muy utilizado

src=src/*.java
pkg=tetris.jar
main=PlayTetris

all:
 mkdir -p bin
 javac ${src} -d bin/

package: all
 ../package.sh ${pkg} ${main}

doc:
 javadoc ${src} -d doc/

play: all
 java -cp bin/ ${main}

clean:
 rm -rf bin
 rm -rf doc
 rm -f ${pkg}

3.2. Ejercicio

	Utiliza solo la línea de comandos

	Construye la aplicación con los comandos que se deducen del fichero Makefile

	Ejecuta la aplicación

	Extra: utiliza el comando make

4. Intellij

	IDE profesional

	Originalmente para Java

	Pero soporta otros lenguajes

4.1. IDEs basados en IntelliJ

	IDE
	Enfoque Principal
	Características Clave
	Audiencia Objetivo

	IntelliJ IDEA Ultimate
	Desarrollo Java y web empresarial
	- IDE más completo, Soporte total para desarrollo empresarial
	Desarrolladores profesionales, equipos empresariales

	IntelliJ IDEA Community Edition
	Desarrollo Java de código abierto
	- Versión gratuita, Características básicas de Java
	Desarrolladores individuales, estudiantes

	PyCharm
	Desarrollo en Python
	- Entorno especializado para Python, Herramientas de análisis de datos
	Programadores Python, científicos de datos

	WebStorm
	Desarrollo web y JavaScript
	- Soporte avanzado para JavaScript Herramientas de frontend
	Desarrolladores web front-end y full-stack

	CLion
	Desarrollo en C y C++
	- Soporte multiplataforma- Herramientas de optimización
	Programadores de sistemas, desarrollo de juegos

	GoLand
	Desarrollo en Go
	- Soporte para microservicios
	Desarrolladores de Go, ingenieros backend

	Rider
	Desarrollo .NET
	
	Desarrolladores .NET y C#

	Android Studio
	Desarrollo de aplicaciones Android
	- Herramienta oficial de Google, Soporte nativo para Kotlin/Java, Emulador integrado
	Desarrolladores de aplicaciones móviles

4.2. Por qué tantas versiones

	La aplicación IntelliJ es prácticamente la misma

	Las diferentes versiones se diferencian en los plugins instalados

	No todos los plugins se pueden instalar en todas las versiones

	La razón no es técnica, sino comercial

5. Instalación Intellij

	Como (casi) todos los IDE

	Instalación CE (comunitiy edition) o en el NAS

	Preferido: Ultimate edition (tras conseguir licencia gratuita de estudiante)

	Descomprimir la instalación

	Ejecutar bin/idea.sh

	Opcional: crear fichero .desktop para lanzarlo cómodamente

	Algunos IDE complejos necesitan una instalación real

	Pero se debe más al S.O. que al IDE

6. Compilación con Intellij

	Proyecto

	Módulo

	Librería

	Fichero jar: clases precompiladas de Java

	SDK (compilador del lenguaje). En Java, se llama JDK

	Facet: capacidades que se añaden a un proyecto

	Ejemplo: añadir un lenguaje

	Artifacts: creación de ficheros entregables/desplegables/ejecutables

[image: img-org0000033.png]

6.1. Proyecto

	Un proyecto contiene código fuente y otros recursos para construir una aplicación

	La aplicación se compone de módulos

	Debe tener al menos un módulo

6.2. Módulo

	Varios ficheros fuente y recursos en una unidad compilable

	Un módulo se compila completo o no puede ejecutarse

6.3. Libería

	Código java ya compilado

	Un fichero jar ya generado

	Otro módulo del proyecto

	Se pueden añadir a cada módulo

6.4. Artifact/entregable

	Un fichero que es el resultado de la aplicación

	Por ejemplo, un jar ejecutable

6.5. Ejercicio compilación

	Crea un módulo para varios juegos

	Compila y juega al tetris

	y al mathhero

	Opcional: juega con otro compañero al pongserver

6.6. Ejercicio de liberías

	Crea un módulo nuevo de nombre all

	Mostrará un menú modo texto para elegir el juego a lanzar

	Lanzará el juego y al acabar el juego se acabará el programa

6.7. Ejercicio artifact

	Crea un jar ejecutable con el módulo all y todas sus dependencias

	Pruébalo con java -jar all.jar

7. Navegación

	Una de las facilidades más importantes del IDE

	El código se escribe una vez, pero se lee muchas veces

	Facilidades para:

	Búsqueda de cadenas/símbolos en el proyecto

	Ir rápidamente a una clase/fichero/método/variable

	Buscar referencias/definiciones de clases/métodos/variables

	Conocer la cadena de llamadas a un método

	Saber qué métodos llaman/son llamados por otros métodos

	Saber la cadena de herencia de una clase/interfaz

	Saber qué clases y métodos se definen en el fichero actual

7.1. Ejercicio de búsqueda de atributo

	Busca la clase Level entre los juegos

	Busca quién lee y quién escribe en el atributo Level.key

	Decide para qué sirve Level.key

	Úsalo en el juego

	Opcional: crea nivel superhardcore con 10 enemigos simultáneos y clave 1111111

	Opcional: hackea el juego para tener vida infinita

7.2. Ejercicio de búsqueda de cadena

	Traduce los mensajes del juego MathHero a castellano

	Level

	Key

	You loose

	Opcional: añade un texto con la vida que aún queda

7.3. Ejercicio de herencia

	Busca la clase MathHero

	Encuentra de qué clases hereda dicha clase

	Encuentra todos los métodos, heredados o no, de esa clase

7.4. Ejercicio

Rellena la siguiente tabla con las teclas rápidas de cada entorno

	
	Idea
	VSCode
	Otros

	Búsqueda de cadenas en proyecto
	
	
	

	Ir a fichero
	
	
	

	Ir a clase/método
	
	
	

	Buscar definición de símbolo
	
	
	

	Buscar usos de símbolo
	
	
	

	Buscar métodos llamados por un método
	
	
	

	Buscar métodos que llaman a un método
	
	
	

	Cadena de herencia de una clase
	
	
	

	Ir rápidamente a un método del fichero
	
	
	

	Volver al sitio anterior
	
	
	

	Otras
	
	
	

8. Depuración (debug)

	Capacidad de avanzar paso a paso en un programa, visualizando variables

	Técnica complementaria a las trazas (println por el código)

	Conceptos

	Punto de ruptura (breakpoint)

	breakpoint condicional

	Pila de llamadas (call stack)

	Visualizar variale (watch, inspect)

8.1. breakpoint

	Parar la ejecución al llegar a cierta instrucción

	El breakpoint puede ser condicional

	Dependiendo del valor de una expresión

	Cuando se lanza una excepción

	Después, se puede seguir avanzando

8.2. step into, step out, step over

	Tras parar en un breakpoint

	step into: Se puede seguir ejecutando la siguiente instrucción, aunque sea en otro método

	step over: Se ejecuta la siguiente instrucción del método actual

	step out: Se ejecuta hasta salir del método actual (vuelve un nivel en el stack trace)

[image: img-org000005f.png]

8.3. Pila de llamadas stack trace

	La ejecución comienza en un método main

	Cada método puede llamar a otros métodos

	El método actual se ve "encima"

	Los métodos que llamaron al método actual quedan "debajo"

	Threads

	Hilos de ejecución, de forma concurrente

	Cada uno tiene su propia pila de llamadas

[image: img-org0000064.png]

8.4. Watch

	En un breakpoint se muestran por defecto todas las variables locales del método

	Pueden añadirse

	Variables globales

	Expresiones java: llamadas a métodos, aritmética…

	inspect: Las variables complejas (objetos) pueden expandirse para ver sus componentes

[image: img-org0000069.png]

8.5. hot reload o hot swap

	Se puede cambiar el código de un método y aplicar los cambios al programa debugueado

	Hay límites:

	No se pueden añadir métodos ni clases y atributos a clases

	No se puede cambiar el tipo de los métodos (qué devuelven y qué reciben)

	No se pueden cambiar variables estáticas

	Ampliación: jrebel

9. JDK vs JRE

	Java Runtime Environment

	Herramientas para ejecutar programas java

	Java Development Kit

	Herramientas para desarrollar programas en java

	Incluye el compilador (y más herramientas) y un JRE

9.1. Versiones java

	Pueden tenerse múltiples versiones de JDK y JRE instaladas

	La mayoría de herramientas:

	Usan JAVA_HOME para encontrar el JDK/JRE

	Utilizan el programa java o javac que esté en el PATH

	O bien, usan el camino completo al intérprete java

9.2. Variable PATH

	Existe en linux y windows

	Contiene los directorios donde se buscan los programas

	Se puede ver con:

	Linux: echo $PATH

	Windows: echo %PATH%

10. Referencias

	Formatos:

	Transparencias

	PDF

	Página web

	EPUB

	Creado con:

	Emacs

	org-re-reveal

	Latex

	Alojado en Github

Autor: Álvaro González Sotillo

Created: 2025-12-18 jue 10:19

Validate

img-org0000064.png
Debug [MathHero

st

+ "Thread-0"@2,189 in group "main": RUNNING
H "AWT-XAWT'@1,636: RUNNING

H "Common-Cleaner'@2,333 in group "InnocuousThreadGroup®: RUNNING

H “Finalizer'@2,331: WAIT

H “Intelli) Suspend Helper'@773 in group "main’: RUNNING
H "Java2D Disposer'@1,609: WAIT

H "main'@1 in group *main’: RUNNING

H "Notification Thread'@788: RUNNING
H "Reference Handler'@2,330: RUNNING
H "Signal Dispatcher'@2,332: RUNNING

Switch frames from anywhere in the IDE with Ctri+Alt+Up a.

annot find local variable ‘e’
()*4 = Expression type unknown: enemies.capacity()*4
27}

1 SEY

img-org000005f.png
Debug [T MathHero

G O

o 7 i Threads & Variables ~ oConsole

+ "Thread-0'@2,189... ‘main*: RUNNING 7

update:40, World
 update:19, MathHero
run:50, GameComponent$1

Switch frames from anywhere in the IDE with CtrisAlt+Up a.

enenies.capacity()x4

st

oo [1e.capacity() = Cannot find local variable 'le'

oo enemies.capacity()*4 = Expression type unknown: enemies.capacity()*4
> B this = {World@2327}

oolose = false

oo win = false
> oo player = {Player@1801}

img-org0000033.png
[3

€« >

Project Settings
Project
Modules
Libraries
Facets
Artifacts

Platform Settings
SDKs
Global Libraries.

Problems

Project

Project Structure

Default settings for all modules. Configure these parameters for each module on the module page s needed.

SDK:

Language level:

Compiler output:

Java-Games

(521 java version "21.0.6"

‘SDK default

~/repos/Java-Games/out

Used for module subdirectories, Production and Test directories for the corresponding sources.

img-org0000069.png
Debug [MathHero

GO > i<l [

+ "Thread-0'@2,189... ‘mai

 RUNNING

 update:40, World
update:19, MathHero
run:50, GameComponent$1

Threads & Variables ~ oConsole

| enemies.capacity x4

oo [1e.capacity() = Cannot find local variable 'le'

@0 enemies.capacity()*4 = Expression type unknown: enemies.capacity()*4

& this = (World@2327)
olose = false
o win = false

> oo player = {Player@1801}

Switch frames from anywhere in the IDE with CtrisAlt+Up a.

