
Instalación y uso de IDE’s

Álvaro González Sotillo

18 de diciembre de 2025

Índice
1. IDE 1

2. Plugins 2

3. Proyecto de ejemplo 2

4. Intellij 3

5. Instalación Intellij 4

6. Compilación con Intellij 4

7. Navegación 6

8. Depuración (debug) 7

9. JDK vs JRE 9

10.Referencias 10

1. IDE
I ntegrated D evelopment E nvironment

Una aplicación con conjunto de herramientas que facilitan la tarea al programador

• Editor de texto
• Compilador
• Enlazador
• Control de versiones
• Gestión de tareas
• Depurador
• Integración con IA generativa
• Empaquetado, generador de instalaciones

1.1. Editor de código
Proporciona una interfaz para escribir y editar el código fuente. Suele incluir características como resaltado de

sintaxis, autocompletado, indentación automática y otras utilidades para facilitar la escritura del código.

1.2. Compilador/Intérprete
Permite compilar o interpretar el código fuente en un formato ejecutable o en bytecode, dependiendo del lenguaje

de programación utilizado. Algunos IDEs también ofrecen la capacidad de ejecutar el código directamente desde el
entorno.

alvaro.gonzalezsotillo@educa.madrid.org 1/ 10

1.3. Depurador
Es una herramienta que ayuda a identificar y corregir errores en el código. Permite establecer puntos de interrupción,

examinar el estado de las variables, ejecutar el código paso a paso y realizar otras operaciones para analizar y solucionar
problemas en el programa.

1.4. Gestión de proyectos/ficheros
Permite crear, organizar y administrar proyectos de desarrollo de software. Esto incluye la capacidad de crear

estructuras de directorios, agregar o eliminar archivos, gestionar dependencias y realizar otras tareas relacionadas con
la organización del proyecto.

1.5. Control de versiones
Algunos IDEs incluyen integración con sistemas de control de versiones como Git, que permiten realizar seguimiento

de cambios en el código, realizar confirmaciones (commits), fusionar (merge) ramas y otras operaciones relacionadas
con la gestión del código fuente.

1.6. Herramientas de construcción
Algunos IDEs proporcionan herramientas para automatizar el proceso de construcción del software, como la gene-

ración de archivos de configuración, la compilación, el empaquetado y otras tareas relacionadas con la construcción
del proyecto.

1.7. Herramientas externas
Los IDEs suelen ofrecer integración con otras herramientas y servicios externos, como sistemas de gestión de bases

de datos, terminal, servidores web, frameworks, bibliotecas, entre otros, para facilitar el desarrollo y la integración con
otros componentes del sistema.

1.8. Agentic code

Integración con IA generativa, que permite realizar funciones que antes se realizaban manualmente o con plugins
específicos

Generación de código

Modificación de código (refactor)

2. Plugins
Complementos que se relacionan con otras herramientas para agregarle una nueva función.

Esta aplicación adicional es ejecutada por la aplicación principal.

Ejercicio: Probar Keymap Exporter

3. Proyecto de ejemplo
Proyecto de ejemplo

Descomprime el ZIP

alvaro.gonzalezsotillo@educa.madrid.org 2/ 10

https://plugins.jetbrains.com/plugin/7066-keymap-exporter
sin-construccion.zip

3.1. Construcción sin IDE
Carpeta Tetris

Fichero Makefile

• Es un sistema básico de construcción

• Antiguo, pero muy estándar y muy utilizado

src=src/*.java
pkg=tetris.jar
main=PlayTetris

all:
mkdir -p bin
javac ${src} -d bin/

package: all
../package.sh ${pkg} ${main}

doc:
javadoc ${src} -d doc/

play: all
java -cp bin/ ${main}

clean:
rm -rf bin
rm -rf doc
rm -f ${pkg}

3.2. Ejercicio
Utiliza solo la línea de comandos

Construye la aplicación con los comandos que se deducen del fichero Makefile

Ejecuta la aplicación

Extra: utiliza el comando make

4. Intellij
IDE profesional

• Originalmente para Java

• Pero soporta otros lenguajes

4.1. IDEs basados en IntelliJ

IDE Enfoque Principal Características Clave Audiencia Objetivo
IntelliJ IDEA Ultimate Desarrollo Java y web empresarial - IDE más completo, Soporte total para desarrollo empresarial Desarrolladores profesionales, equipos empresariales
IntelliJ IDEA Community Edition Desarrollo Java de código abierto - Versión gratuita, Características básicas de Java Desarrolladores individuales, estudiantes
PyCharm Desarrollo en Python - Entorno especializado para Python, Herramientas de análisis de datos Programadores Python, científicos de datos
WebStorm Desarrollo web y JavaScript - Soporte avanzado para JavaScript Herramientas de frontend Desarrolladores web front-end y full-stack
CLion Desarrollo en C y C++ - Soporte multiplataforma- Herramientas de optimización Programadores de sistemas, desarrollo de juegos
GoLand Desarrollo en Go - Soporte para microservicios Desarrolladores de Go, ingenieros backend
Rider Desarrollo .NET Desarrolladores .NET y C#
Android Studio Desarrollo de aplicaciones Android - Herramienta oficial de Google, Soporte nativo para Kotlin/Java, Emulador integrado Desarrolladores de aplicaciones móviles

alvaro.gonzalezsotillo@educa.madrid.org 3/ 10

4.2. Por qué tantas versiones
La aplicación IntelliJ es prácticamente la misma

Las diferentes versiones se diferencian en los plugins instalados

No todos los plugins se pueden instalar en todas las versiones

• La razón no es técnica, sino comercial

5. Instalación Intellij
Como (casi) todos los IDE

• Instalación CE (comunitiy edition) o en el NAS

• Preferido: Ultimate edition (tras conseguir licencia gratuita de estudiante)

• Descomprimir la instalación

• Ejecutar bin/idea.sh

• Opcional: crear fichero .desktop para lanzarlo cómodamente

Algunos IDE complejos necesitan una instalación real

• Pero se debe más al S.O. que al IDE

6. Compilación con Intellij
Proyecto

Módulo

Librería

• Fichero jar: clases precompiladas de Java

• SDK (compilador del lenguaje). En Java, se llama JDK

Facet : capacidades que se añaden a un proyecto

• Ejemplo: añadir un lenguaje

Artifacts: creación de ficheros entregables/desplegables/ejecutables

alvaro.gonzalezsotillo@educa.madrid.org 4/ 10

https://www.jetbrains.com/idea/download/?section=linux
https://www.jetbrains.com/idea/download/?section=linux
https://www.jetbrains.com/shop/eform/students

6.1. Proyecto
Un proyecto contiene código fuente y otros recursos para construir una aplicación

La aplicación se compone de módulos

• Debe tener al menos un módulo

6.2. Módulo
Varios ficheros fuente y recursos en una unidad compilable

Un módulo se compila completo o no puede ejecutarse

6.3. Libería
Código java ya compilado

• Un fichero jar ya generado
• Otro módulo del proyecto

Se pueden añadir a cada módulo

6.4. Artifact/entregable
Un fichero que es el resultado de la aplicación

• Por ejemplo, un jar ejecutable

6.5. Ejercicio compilación
Crea un módulo para varios juegos

• Compila y juega al tetris
• y al mathhero
• Opcional: juega con otro compañero al pongserver

alvaro.gonzalezsotillo@educa.madrid.org 5/ 10

6.6. Ejercicio de liberías
Crea un módulo nuevo de nombre all

Mostrará un menú modo texto para elegir el juego a lanzar

Lanzará el juego y al acabar el juego se acabará el programa

6.7. Ejercicio artifact

Crea un jar ejecutable con el módulo all y todas sus dependencias

Pruébalo con java -jar all.jar

7. Navegación
Una de las facilidades más importantes del IDE

El código se escribe una vez, pero se lee muchas veces

Facilidades para:

• Búsqueda de cadenas/símbolos en el proyecto

• Ir rápidamente a una clase/fichero/método/variable

• Buscar referencias/definiciones de clases/métodos/variables

• Conocer la cadena de llamadas a un método

• Saber qué métodos llaman/son llamados por otros métodos

• Saber la cadena de herencia de una clase/interfaz

• Saber qué clases y métodos se definen en el fichero actual

7.1. Ejercicio de búsqueda de atributo
Busca la clase Level entre los juegos

Busca quién lee y quién escribe en el atributo Level.key

Decide para qué sirve Level.key

Úsalo en el juego

Opcional: crea nivel superhardcore con 10 enemigos simultáneos y clave 1111111

Opcional: hackea el juego para tener vida infinita

7.2. Ejercicio de búsqueda de cadena
Traduce los mensajes del juego MathHero a castellano

• Level

• Key

• You loose

Opcional: añade un texto con la vida que aún queda

7.3. Ejercicio de herencia
Busca la clase MathHero

Encuentra de qué clases hereda dicha clase

Encuentra todos los métodos, heredados o no, de esa clase

alvaro.gonzalezsotillo@educa.madrid.org 6/ 10

7.4. Ejercicio
Rellena la siguiente tabla con las teclas rápidas de cada entorno

Idea VSCode Otros
Búsqueda de cadenas en proyecto
Ir a fichero
Ir a clase/método
Buscar definición de símbolo
Buscar usos de símbolo
Buscar métodos llamados por un método
Buscar métodos que llaman a un método
Cadena de herencia de una clase
Ir rápidamente a un método del fichero
Volver al sitio anterior
Otras

8. Depuración (debug)
Capacidad de avanzar paso a paso en un programa, visualizando variables

Técnica complementaria a las trazas (println por el código)

Conceptos

• Punto de ruptura (breakpoint)

• breakpoint condicional

• Pila de llamadas (call stack)

• Visualizar variale (watch, inspect)

8.1. breakpoint

Parar la ejecución al llegar a cierta instrucción

El breakpoint puede ser condicional

• Dependiendo del valor de una expresión

• Cuando se lanza una excepción

Después, se puede seguir avanzando

8.2. step into, step out, step over

Tras parar en un breakpoint

• step into: Se puede seguir ejecutando la siguiente instrucción, aunque sea en otro método

• step over : Se ejecuta la siguiente instrucción del método actual

• step out : Se ejecuta hasta salir del método actual (vuelve un nivel en el stack trace)

alvaro.gonzalezsotillo@educa.madrid.org 7/ 10

8.3. Pila de llamadas stack trace

La ejecución comienza en un método main

Cada método puede llamar a otros métodos

• El método actual se ve "encima"

• Los métodos que llamaron al método actual quedan "debajo"

Threads

• Hilos de ejecución, de forma concurrente

• Cada uno tiene su propia pila de llamadas

alvaro.gonzalezsotillo@educa.madrid.org 8/ 10

8.4. Watch

En un breakpoint se muestran por defecto todas las variables locales del método

Pueden añadirse

• Variables globales

• Expresiones java: llamadas a métodos, aritmética. . .

inspect : Las variables complejas (objetos) pueden expandirse para ver sus componentes

8.5. hot reload o hot swap

Se puede cambiar el código de un método y aplicar los cambios al programa debugueado

Hay límites:

• No se pueden añadir métodos ni clases y atributos a clases

• No se puede cambiar el tipo de los métodos (qué devuelven y qué reciben)

• No se pueden cambiar variables estáticas

Ampliación: jrebel

9. JDK vs JRE
Java Runtime Environment

• Herramientas para ejecutar programas java

Java Development Kit

• Herramientas para desarrollar programas en java

• Incluye el compilador (y más herramientas) y un JRE

alvaro.gonzalezsotillo@educa.madrid.org 9/ 10

https://www.jrebel.com/

9.1. Versiones java
Pueden tenerse múltiples versiones de JDK y JRE instaladas

La mayoría de herramientas:

• Usan JAVA_HOME para encontrar el JDK/JRE

• Utilizan el programa java o javac que esté en el PATH

• O bien, usan el camino completo al intérprete java

9.2. Variable PATH
Existe en linux y windows

Contiene los directorios donde se buscan los programas

Se puede ver con:

• Linux: echo $PATH

• Windows: echo%PATH%

10. Referencias
Formatos:

• Transparencias

• PDF

• Página web

• EPUB

Creado con:

• Emacs

• org-re-reveal

• Latex

Alojado en Github

alvaro.gonzalezsotillo@educa.madrid.org 10/ 10

https://wiki.debian.org/path
./ED-02-ides.reveal.html
./ED-02-ides.wp.html
./ED-02-ides.epub
https://www.gnu.org/s/emacs/
https://gitlab.com/oer/org-re-reveal
https://www.latex-project.org/
https://alvarogonzalezsotillo.github.io/apuntes-clase

	IDE
	Plugins
	Proyecto de ejemplo
	Intellij
	Instalación Intellij
	Compilación con Intellij
	Navegación
	Depuración (debug)
	JDK vs JRE
	Referencias

