Instalacion y uso de IDE'’s

Alvaro Gonzalez Sotillo

18 de diciembre de 2025

Indice

1. IDE 1
2. Plugins 2
3. Proyecto de ejemplo 2
4. Intellij 3
5. Instalacion Intellij 4
6. Compilacion con Intellij 4
7. Navegacion 6
8. Depuracién (debug) 7
9. JDK vs JRE 9
10.Referencias 10
1. IDE

» I ntegrated D evelopment E nvironment
= Una aplicacion con conjunto de herramientas que facilitan la tarea al programador

e Editor de texto

e Compilador

e Enlazador

e Control de versiones

e Gestion de tareas

e Depurador

e Integracion con IA generativa

o Empaquetado, generador de instalaciones

1.1. Editor de cbédigo

Proporciona una interfaz para escribir y editar el codigo fuente. Suele incluir caracteristicas como resaltado de

sintaxis, autocompletado, indentacién automatica y otras utilidades para facilitar la escritura del cédigo.

1.2. Compilador/Intérprete

Permite compilar o interpretar el cédigo fuente en un formato ejecutable o en bytecode, dependiendo del lenguaje

de programacion utilizado. Algunos IDEs también ofrecen la capacidad de ejecutar el codigo directamente desde el
entorno.

alvaro.gonzalezsotillo@educa.madrid.org 1/ 10

1.3. Depurador

Es una herramienta que ayuda a identificar y corregir errores en el c6digo. Permite establecer puntos de interrupcion,
examinar el estado de las variables, ejecutar el cédigo paso a paso y realizar otras operaciones para analizar y solucionar
problemas en el programa.

1.4. Gestion de proyectos/ficheros

Permite crear, organizar y administrar proyectos de desarrollo de software. Esto incluye la capacidad de crear
estructuras de directorios, agregar o eliminar archivos, gestionar dependencias y realizar otras tareas relacionadas con
la organizacion del proyecto.

1.5. Control de versiones

Algunos IDEs incluyen integracion con sistemas de control de versiones como Git, que permiten realizar seguimiento
de cambios en el codigo, realizar confirmaciones (commits), fusionar (merge) ramas y otras operaciones relacionadas
con la gestion del codigo fuente.

1.6. Herramientas de construcciéon

Algunos IDEs proporcionan herramientas para automatizar el proceso de construccion del software, como la gene-
racién de archivos de configuracion, la compilacion, el empaquetado y otras tareas relacionadas con la construcciéon
del proyecto.

1.7. Herramientas externas

Los IDEs suelen ofrecer integracion con otras herramientas y servicios externos, como sistemas de gestion de bases
de datos, terminal, servidores web, frameworks, bibliotecas, entre otros, para facilitar el desarrollo y la integraciéon con
otros componentes del sistema.

1.8. Agentic code

Integracion con TA generativa, que permite realizar funciones que antes se realizaban manualmente o con plugins
especificos

= Generacion de codigo

Modificaciéon de codigo (refactor)

2. Plugins

= Complementos que se relacionan con otras herramientas para agregarle una nueva funcion.
= Esta aplicaciéon adicional es ejecutada por la aplicaciéon principal.

= Ejercicio: Probar Keymap Exporter

3. Proyecto de ejemplo
= Proyecto de ejemplo

= Descomprime el ZIP

alvaro.gonzalezsotillo@educa.madrid.org 2/ 10

https://plugins.jetbrains.com/plugin/7066-keymap-exporter
sin-construccion.zip

3.1. Construccion sin IDE

= Carpeta Tetris

= Fichero Makefile

e Es un sistema basico de construccion

e Antiguo, pero muy estandar y muy utilizado

src=src/*.java
pkg=tetris.jar
main=PlayTetris

all:
mkdir -p bin
javac ${src} -d bin/
package: all
../package.sh ${pkg} ${main}

doc:

javadoc ${src} -d doc/
play: all

java —cp bin/ ${main}

clean:
rm -rf bin
rm -rf doc
rm —-f ${pkg}

3.2. Ejercicio

» Utiliza solo la linea de comandos

Ejecuta la aplicaciéon

Extra: utiliza el comando make

4. TIntellij

IDE profesional

e Originalmente para Java

e Pero soporta otros lenguajes

4.1. IDEs basados en IntelliJ

IDE

Enfoque Principal

Construye la aplicacion con los comandos que se deducen del fichero Makefile

Caracteristicas Clave

IntelliJ IDEA Ultimate

IntelliJ IDEA Community Edition
PyCharm

WebStorm

CLion

GoLand

Rider

Android Studio

alvaro.gonzalezsotillo@educa.madrid.org

Desarrollo Java y web empresarial
Desarrollo Java de codigo abierto
Desarrollo en Python

Desarrollo web y JavaScript
Desarrollo en C y C++

Desarrollo en Go

Desarrollo .NET

Desarrollo de aplicaciones Android

- IDE mas completo, Soporte total para desar
- Version gratuita, Caracteristicas bésicas de .
- Entorno especializado para Python, Herram
- Soporte avanzado para JavaScript Herramie
- Soporte multiplataforma- Herramientas de ¢
- Soporte para microservicios

- Herramienta oficial de Google, Soporte natis

3/ 10

4.2. Por qué tantas versiones

= La aplicaciéon IntelliJ es practicamente la misma
= Las diferentes versiones se diferencian en los plugins instalados
= No todos los plugins se pueden instalar en todas las versiones

e La razoén no es técnica, sino comercial

5. Instalacion Intellij

= Como (casi) todos los IDE

e Instalacion CE (comunitiy edition) o en el NAS

e Preferido: Ultimate edition (tras conseguir licencia gratuita de estudiante)
e Descomprimir la instalacién

e Ejecutar bin/idea.sh

e Opcional: crear fichero .desktop para lanzarlo comodamente
= Algunos IDE complejos necesitan una instalacion real

e Pero se debe mas al S.O. que al IDE

6. Compilacion con Intellij

= Proyecto
= Médulo
= Libreria

e Fichero jar: clases precompiladas de Java

e SDK (compilador del lenguaje). En Java, se llama JDK
= Facet: capacidades que se anaden a un proyecto
e Ejemplo: anadir un lenguaje

» Artifacts: creacion de ficheros entregables/desplegables/ejecutables

alvaro.gonzalezsotillo@educa.madrid.org 4/ 10

https://www.jetbrains.com/idea/download/?section=linux
https://www.jetbrains.com/idea/download/?section=linux
https://www.jetbrains.com/shop/eform/students

g * Project Structure

€

Project
Project Settings
Project
Modules Name: Java-Games
Libraries
Facets SDK: [21 java version "21.0.6
Artifacts
Platform Settings Language level: SDK default
SDKs
Glabal Libraties Compiler output: ~/repos/Java-Games/out

Problems

6.1. Proyecto

= Un proyecto contiene codigo fuente y otros recursos para construir una aplicacion

= La aplicacién se compone de modulos

e Debe tener al menos un modulo

6.2. Mobdulo
= Varios ficheros fuente y recursos en una unidad compilable

= Un modulo se compila completo o no puede ejecutarse

6.3. Liberia
= Codigo java ya compilado

e Un fichero jar ya generado

e Otro modulo del proyecto

= Se pueden anadir a cada modulo

6.4. Artifact/entregable
= Un fichero que es el resultado de la aplicacién

e Por ejemplo, un jar ejecutable

6.5. Ejercicio compilaciéon
= Crea un moédulo para varios juegos

e Compila y juega al tetris
e v al mathhero

e Opcional: juega con otro companero al pongserver

alvaro.gonzalezsotillo@educa.madrid.org

Edit

Cancel

5/ 10

6.6. Ejercicio de liberias
= Crea un moédulo nuevo de nombre all
= Mostrara un ment modo texto para elegir el juego a lanzar

= Lanzara el juego y al acabar el juego se acabara el programa

6.7. Ejercicio artifact
= Crea un jar ejecutable con el modulo all y todas sus dependencias

= Pruébalo con java —-jar all.jar

7. Navegacion

= Una de las facilidades méas importantes del IDE
= El codigo se escribe una vez, pero se lee muchas veces
= Facilidades para:

e Busqueda de cadenas/simbolos en el proyecto
e Ir rapidamente a una clase/fichero/método/variable
e Buscar referencias/definiciones de clases/métodos/variables

e Conocer la cadena de llamadas a un método

Saber qué métodos llaman /son llamados por otros métodos

Saber la cadena de herencia de una clase/interfaz

e Saber qué clases y métodos se definen en el fichero actual

7.1. Ejercicio de btisqueda de atributo

= Busca la clase Level entre los juegos

= Busca quién lee y quién escribe en el atributo Level.key

= Decide para qué sirve Level .key

= Usalo en el juego

= Opcional: crea nivel superhardcore con 10 enemigos simultaneos y clave 1111111

= Opcional: hackea el juego para tener vida infinita

7.2. Ejercicio de btisqueda de cadena

= Traduce los mensajes del juego MathHero a castellano

o Level
o Key

e You loose

= Opcional: anade un texto con la vida que atin queda

7.3. Ejercicio de herencia

= Busca la clase MathHero
= Encuentra de qué clases hereda dicha clase

= Encuentra todos los métodos, heredados o no, de esa clase

alvaro.gonzalezsotillo@educa.madrid.org 6/ 10

7.4. Ejercicio

Rellena la siguiente tabla con las teclas rapidas de cada entorno

Idea VSCode Otros

Bisqueda de cadenas en proyecto

Ir a fichero

Ir a clase/método

Buscar definicion de simbolo

Buscar usos de simbolo

Buscar métodos llamados por un método
Buscar métodos que llaman a un método
Cadena de herencia de una clase

Ir rapidamente a un método del fichero
Volver al sitio anterior

Otras

8. Depuracion (debug)
= Capacidad de avanzar paso a paso en un programa, visualizando variables
» Técnica complementaria a las trazas (print1ln por el codigo)
= Conceptos

e Punto de ruptura (breakpoint)
e breakpoint condicional
e Pila de llamadas (call stack)

e Visualizar variale (watch, inspect)

8.1. breakpoint

= Parar la ejecucion al llegar a cierta instrucciéon
= El breakpoint puede ser condicional

e Dependiendo del valor de una expresion

e Cuando se lanza una excepciéon

= Después, se puede seguir avanzando

8.2. step into, step out, step over
= Tras parar en un breakpoint

e step into: Se puede seguir ejecutando la siguiente instruccion, aunque sea en otro método
e step over: Se ejecuta la siguiente instruccién del método actual

e step out: Se ejecuta hasta salir del método actual (vuelve un nivel en el stack trace)

alvaro.gonzalezsotillo@educa.madrid.org 7/ 10

Debug [T MathHero

G Of > I T | (o) A Threads & Variables .Console B
+ "Thread-0"@2,189... "main": RUNNING 7~ enemies.capacity()*4 -é,-o ~
update:40, World oo |1e.capacity() = Cannot find local variable 'Ie’
2 update:19, MathHero oo enemies.capacity()*4 = Expression type unknown: enemies.capacity()*4
run:50, GameComponent$1 » B this = {World@2327}
oo |ose = false
oo win = false
» oo player = {Player@1801}
Switch frames from anywhere in the IDE with Ctrl+Alt+Up a...
8.3. Pila de llamadas stack trace
= La ejecucién comienza en un método main
= Cada método puede llamar a otros métodos
e El método actual se ve "encima"
e Los métodos que llamaron al método actual quedan "debajo"
s Threads
e Hilos de ejecucion, de forma concurrente
e Cada uno tiene su propia pila de llamadas
Debug 9 MathHero
P B O g — i A z T de 0 Vool FaY L I:E
+ "Thread-0"@2,189... "main": RUNNING 7~ || enemies.capacity(J*4 + -~
~ "Thread-0"@2,189 in group "main": RUNNING Ennotnindliosalvanablerie:
H "AWT-XAWT"@1,636: RUNNING ify()*4 = Expression type unknown: enemies.capacity()*4

E "Common-Cleaner"@2,333 in group "InnocuousThreadGroup": RUNNING 27}
E "Finalizer"@2,331: WAIT

E "IntelliJ Suspend Helper"@773 in group "main": RUNNING
B "Java2D Disposer"@1,609: WAIT 1801}
E "main"@1 in group "main": RUNNING

E "Notification Thread"@788: RUNNING
E "Reference Handler"@2,330: RUNNING
E "signal Dispatcher"@2,332: RUNNING

Switch frames from anmywhere in the IDE with Ctrl+Alt+Up a...

alvaro.gonzalezsotillo@educa.madrid.org

8/ 10

8.4. Waltch

= En un breakpoint se muestran por defecto todas las variables locales del método

= Pueden afiadirse

e Variables globales

e Expresiones java: llamadas a métodos, aritmética. . .

= inspect: Las variables complejas (objetos) pueden expandirse para ver sus componentes

Debug [7 MathHero

G O I ALY T &P Threads & Variables Console 15}

+ "Thread-0"@2,189... "main": RUNNING enemies.capacity()*4

g+

“ update:40, World
update:19, MathHero

run:50, GameComponent$1 S this = {World
oo lpse = false
oo win = false
oo player =

8.5. hot reload o hot swap
= Se puede cambiar el cdédigo de un método y aplicar los cambios al programa debugueado
= Hay limites:

e No se pueden anadir métodos ni clases y atributos a clases

e No se puede cambiar el tipo de los métodos (qué devuelven y qué reciben)

e No se pueden cambiar variables estéaticas

= Ampliacién: jrebel

9. JDK vs JRE

= Java Runtime Environment

e Herramientas para ejecutar programas java

= Java Development Kit

e Herramientas para desarrollar programas en java

e Incluye el compilador (y mas herramientas) y un JRE

alvaro.gonzalezsotillo@educa.madrid.org 9/ 10

https://www.jrebel.com/

9.1. Versiones java
= Pueden tenerse multiples versiones de JDK y JRE instaladas
= La mayoria de herramientas:

e Usan JAVA_HOME para encontrar el JDK/JRE
e Utilizan el programa java o javac que esté en el PATH

e O bien, usan el camino completo al intérprete java

9.2. Variable PATH

= Existe en linux y windows
= Contiene los directorios donde se buscan los programas
= Se puede ver con:

e Linux: echo SPATH
e Windows: echo $PATH %

10. Referencias

= Formatos:

e Transparencias
e PDF
e Pégina web
e EPUB
s Creado con:
e Emacs
e org-re-reveal

e Latex

= Alojado en Github

alvaro.gonzalezsotillo@educa.madrid.org

10/ 10

https://wiki.debian.org/path
./ED-02-ides.reveal.html
./ED-02-ides.wp.html
./ED-02-ides.epub
https://www.gnu.org/s/emacs/
https://gitlab.com/oer/org-re-reveal
https://www.latex-project.org/
https://alvarogonzalezsotillo.github.io/apuntes-clase

	IDE
	Plugins
	Proyecto de ejemplo
	Intellij
	Instalación Intellij
	Compilación con Intellij
	Navegación
	Depuración (debug)
	JDK vs JRE
	Referencias

